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4. Abstract 

Feedforward neural networks were used to model three parameters during the Space Shuttle 
Main Engine startup transient. The three parameters were the main combustion chamber pressure, 
a controlled parameter; the high pressure oxidizer turbine discharge temperature, a redlined 
parameter; and the high pressure fuel pump discharge pressure, a failure-indicating performance 
parameter. Network inputs consisted of time windows of data from engine measurements that 
correlated highly to the modeled parameter. A standard backpropagation algorithm was used to train 
the feedforward networks on two nominal firings. Each trained network was validated with four 
additional nominal firings. For all three parameters, the neural networks were able to accurately ^ 
predict the data in the validation sets as well as the training set. 
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activation function of hidden and output layer nodes 
command and data simulator 
open-/closed-loop variable for the MCC pressure model 
pre-/post-prime time and open-/closed-loop variable for the 
HPOT discharge temperature model 
additive uncorrelated noise 
nonlinear function describing relationship between system variables 
fuel preburner 
fuel preburner oxidizer valve 
high pressure fuel pump 
high pressure fuel turbine 
high pressure fuel turbopump 
high pressure oxidizer turbine 
main combustion chamber 
the window size of function input u&I 
the net input to node i 
the output of node i 
the predicted value for input pattern p 
oxidizer preburner 
oxidizer preburner oxidizer valve 
preburner boost pump 
number of model input variables 
root mean squared 
Stennis Space Center 
Space Shuttle Main Engine 
time 
the target value for input pattern p 
the bias term for node i 
a function input variable 
weight connecting nodes i and j in adjacent layers 
the function output 



Introduction 

Multilayer feedforward neural networks were used to model critical parameters of the Space 
Shuttle Main Engine (SSME) during the six-second startup transient. The three parameters selected 
for modeling were the Main Combustion Chamber (MCC) pressure, a controlled variable; the High 
Pressure Oxidizer Turbine (HPCTJ discharge temperature, a redlined parameter; and the High 
Pressure Fuel Pump (HPFP) discharge pressure, a parameter cited in failure investigation summaries 
for providing early failure indications.’ These models were developed for eventual incorporation into 
a real-time advanced safety system or a post-test diagnostic system. Accurate models of parameters 
during the SSME startup transient are needed to improve the fault detection and isolation capability 
of condition monitoring systems during the first six seconds of engine operation. 

The current SSME safety system employs basic redline limits and ignition confirm criteria. 
The redlines have upper and/or lower limits assigned to them. Limit monitoring commences at 
scheduled times during startup.’ In addition, ignition confirm criteria are administered to three 
parameters during startup to ensure that ignition has occurred. Failure to meet any of the criteria 
results in engine shutdown? Current post-test analysis of the start transient consists of visually 
comparing parameters to two standard deviation limits and to previous start transients? 

Recent SSME condition monitoring activities have focused on both real-time safety monitoring 
and post-test diagnostics.‘“’ These efforts have demonstrated the potential of advanced algorithms 
to provide improved failure detection capability during ground test firings, thus reducing engine and/or 
test stand damage, and to facilitate the post-test diagnostic process. Efforts in advanced safety 
monitoring systems for the SSME have emphasized mainstage failure detection.‘sJ“ Startup is difficult 
to monitor because of the highly complex and nonlinear nature of the SSME dynamics. Accurate 
models of parameters during startup would provide improved engine and sensor failure detection 
capability during the first seconds of engine operation. The models would also provide additional 
information for fault detection and isolation when used as part of an automated engine diagnostic 
system.8 In both cases, the residual between the actual and predicted values must be analyzed to 
detect an anomalous engine condition or to identify an engine or sensor failure. 

The ability of feedforward networks to model nonlinear systems has been demonstrated in the 
literature; it has been shown that neural networks with only one hidden layer can uniformly 
approximate any continuous function?‘l Neural networks are well-suited for problems in which the 
exact relationships between sensor measurements are complex or unknownl’ In this investigation, 
neural networks were used to learn the relationships among several SSME sensor measurements 
during the startup transient. A standard backpropagation algorithm was used to train the networks. 
The training set consisted of Command and Data Simulator (CADS) and facility data from the first 
six seconds of two nominal firings, B1070 and B1072. The trained networks were validated using data 
from four additional nominal firings: B1073, B1074, B1075 and B1077. The first two characters of a 
test firing designation indicate the test stand at Stennis Space Center @SC) on which the firing took 
place, and the last three numbers indicate the test number. In addition to Bl, there are two other 
SSME test stands at SSC, Al and A2. In order to improve model prediction accuracy, several issues 
related to the engine system and the neural network architecture were addressed when training the 
networks. These issues included the selection of measurements in the input vector, the number of 
nodes in the hidden layer, the transition from open loop to closed-loop control, and the prime times 
of the MCC, the Fuel Preburner (FPB) and the Oxidizer Preburner (OPB). Performance of the trained 
networks, or models, on the training and validation sets was measured by the total root mean squared 
(rms) error over all of the output patterns of a given set and by the maximum percent deviation 
between actual and predicted values. 
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Analysis 

Theory 

The mathematical relationship between observed system variables, or sensor outputs, can be 
very complex and the exact form is usually unknown. In practice, the modeling of real-world systems 
based on observed system variables is achieved by choosing a model set of known functions that is 
dense in the space of continuous functions.” Polynomial functions are an example of such a model set. 
Feedforward networks with nonlinear processing elements have been considered as an alternative 
model set and have been successfully used to model nonlinear dynamical systems?” Because neural 
networks can uniformly approximate any continuous function, the neural network approach has some 
advantages over more conventional methods. Polynomial methods, for example, have difficulties in 
the presence of nonpolynomial nonlinearities while neural networks can accurately model both 
polynomial and nonpolynomial nonlinearities? 

Consider the nonlinear function, f; that describes the relationship between several system 
variables: 

y(Z)=jb,(t-1) ,..., u&t-n,>,u,(t-1) ,..., I(&-nz) ,..., u&t-l) ,..., q(t-ni) ,..., u&t-l) ,..., u,(t-n,)) +e(t) (1) ‘ 

where y(t) is the function output, q(t) is a function input variable, n, is the window size for input 
variable u,(t), and e(t) is additive uncorrelated noise. ‘I One of the function inputs, u,(t), can represent 
autoregressive information. The total number of input variables is r. Neural networks are used to 
approximate the function f based on observed system variables, y(t). 

Feedforward networks with a single hidden layer were used in this investigation. Each layer 
consists of processing elements called nodes; the structure of a feedforward network is given in Fig. 
1. Each node of a given layer receives input from all of the nodes in the previous layer and sends its 
output to each node in the following layer. The connections are unidirectional and have weights 
associated with them. There are no connections between nodes within a layer and no connections 
bridging layers. The relationship between the input and the output of a node in the hidden or output 
layers is determined by the activation function, a. The commonly used sigmoid activation function was 
employed in this study:” 

1 1 
a(r&q=oi=--- 

l+e-% 2 

where net, is the net input to node i 

(3) 

c 
3, is the bias term for unit i, oj is the output of node j in the previous layer, and wij is the weight 
between the two nodes i and j. A bias is similar in function to a threshold and is treated as a weight 
connected to a node that is always on. The values of the weights and biases are adjusted during the 
learning process.‘a 

The multiple-input single-output network can be described as a mapping function which 
uniformly approximates the function f given by Eq. (1). The approximation is achieved by using the 
backpropagation algorithm, a supervised learning procedure based on the Generalized Delta Rule.” 
Backpropagation computes the weights and bias terms to minimize the mean squared error between 
the values predicted by the network and the desired values. In this investigation, the weights and 
biases were updated after every complete pass through the training data. The learning rate and 
momentum determined the amount by which the weights were updated and were set to achieve rapid 
learning without significant oscillations in the error.1’ 
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Two parameters were used to assess the performance of the trained networks: the total rms 
error of the output layer and the maximum percent error of a training or validation set. The total rms 
error represents the average of the output error squared over all of the patterns in a training or 
validation set: 

where t, is the target or desired output and op is the network output for pattern p. The second 
performance measure is the maximum percent error of a training or validation set, where the percent 
error of a particular pattern, p, is given by: 

t -op 
percent error =P 

5 
(6) 

Application to SSME Data 

In using feedforward neural networks to model the SSME startup transient, several issues 
related to the network architecture were addressed. These included the selection of the measurements 
(including autoregressive information) in the input vector, the window size, and the number of nodes 
in the hidden layer. In addition, several engine system conditions required monitoring in order to 
improve network prediction accuracy. These were sensor failures, the initiation of closed-loop control 
during the start sequence, and the realization of full faceplate burning, or prime time, of the three 
combustion chambers (MCC, FPB, and OPB). These issues are discussed in this section. 

The engine measurements in the model input vector were determined by computing the 
correlation coefficient between the parameter to be modeled and the remainder of the measurements 
in the CADS and facility data sets. Many parameters were found to be highly correlated due to their 
strong response to changes in power level. Physically relevant, non-redundant measurements with 
high correlation coeficients were chosen; these parameters are given in Table 1. It should be noted 
that sensor failures affected the choice of measurements. The HPFP discharge temperature, for 
example, could not be included in the input vector for the HPFP discharge pressure, since the 
temperature measurement was faulty in several of the test firings used. Data from the first six 
seconds of test firings B1070 and B1072 were used to construct the training sets. Prior to training, 
all input-output pairs were normalized to fall within the range [-0.5,0.51 as dictated by the activation 
function given by Eq. (2). The normalization was achieved by selecting maximum values for the input 
and output variables baaed on the data in all of the training and validation sets. 

The impact of including autoregressive information in the network input was investigated for 
all three parameters. Autoregressive information did not improve the predictive accuracy of the MCC 
pressure and the HPFP discharge pressure models and was not used in the final models for these 
parameters. The HPOT discharge temperature model, on the other hand, exhibited a large 
improvement in prediction accuracy when autoregressive information was added; the total rms error 
decreased by a factor of 1.8. Autoregressive data increased the size of the input layer and hence was 
accompanied by increases in training and processing times. Autoregressive information was retained 
in the final HPCT discharge temperature model, however, because significant improvements in the 
quality of the predicted signal were realized. 

The window size was chosen based on behavior observed for the MCC pressure. For a given 
neural network model, the same window size was used for each input variable, u&t). Therefore, the 
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number of nodes in the input layer was equal to the number of input variables, r, multiplied by the 
window size. A window size of one corresponds to one sampling interval, or 40 msec. Window sizes 
of ten, five, and one were examined. The total rms error for the MCC pressure increased by a factor 
of 1.3 when the window size was changed from ten to five, and increased by a factor of 2.15 when the 
window size was changed from five to one. A window size of ten was chosen in this investigation 
because of the improved quality of the predicted signals. Window sizes larger than ten were not 
considered for two reasons. First, larger window sizes increase the time until the first predicted value 
is available to the safety or diagnostic system thereby reducing the period of coverage during the 
startup transient. Second, larger window sizes increase the number of nodes in the input layer, 
thereby increasing the processing requirements. 

The size of the hidden layer was chosen by varying the number of hidden nodes used to train 
the MCC pressure networks. When the number of hidden nodes was increased from 10 to 20, no 
improvement in the total rms error was observed. In addition, the larger hidden layer increased the 
number of weights and hence the training time. Training times are important since it is anticipated 
that the networks will require periodic updating as new test data becomes available. Furthermore, 
test-stand specific networks may be required. Thus, three networks would be needed for each 
parameter. Excessive training times would prevent practical implementation of these models. Larger 
layers also increase the processing time when the network is being used in a failure detection or 
diagnostic mode. Ten hidden nodes were used for all subsequent simulations. 

An important system condition which was taken into account during network training was the 
closed-loop thrust and mixture ratio control of the SSME. Engine thrust is directly proportional to 
the MCC pressure. Complete closed-loop control is achieved at engine start +3.6 seconds. The error 
between actual and desired main combustion chamber pressures drives the oxidizer preburner oxidizer 
valve (OPOV) and the proper mixture ratio is maintained by adjusting the Fuel Prebulmer Oxidizer 
Valve (FPOV). All other valves are scheduled.” Closed-loop control was taken into account when 
modeling the MCC pressure and the HPOT discharge temperature, since the input vectors for these 
two parameters included the FPOV and OPOV. For the MCC pressure model, a dummy variable, 
DUMl, was added to each time slice in the input layer to indicate whether the data at that time slice 
represented partially open or completely closed-loop behavior: 

DUMl= 0 < t < 3.6 
t > 3.6 

(6) 

A slightly modified version of Eq. (6) was used for the HPOT discharge temperature and is given later 
in this section. 

, 

Each of the modeled parameters is closely associated with one of the combustors and is 
therefore strongly affected by the prime time of the relevant chamber. The MCC prime time is defined 
as the time when the MCC pressure reaches 100 psia. The OPB prime time is determined by 
monitoring the HPOT discharge temperature, and occurs when the temperature changes from a 
decreasing to an increasing trend. Although the HPFP discharge pressure is not used in determining 
the FPB prime time, it is strongly affected by the prime time of this chamber. The FPB prime time 
is defined as the point at which the High Pressure Fuel Turbopump (HPFI’P) shaft speed exhibits a 
sharp increase in slope. During a nominal firing, the FPB primes first, followed by the MCC and the 
OPB.16 The prime times for the test firings used in this investigation were obtained using the above 
criteria. The dependence of model use 0i-1 the determination of prime times is not unreasonable, even 
for a real-time safety system, since complicated calculations are not required. Typical prime times for 
the FPB, MCC and OPB are 1.37, X44, and 1.62 seconds from engine start, respectively.‘6 

The effect of prime time on model prediction accuracy was investigated for all three 
parameters. The solid curves in Figs. 2(a), 2(b), and 2(c) give mean values for the MCC pressure, the 
HPFP discharge pressure and the HPOT discharge temperature, respectively, during the first six 
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seconds of engine operation. The mean values are currently used in the post-test SSME data reviews 
and represent the average behavior of the parameters over a large number firings considered nominal 
by engine experts.” Sharp increases in the three parameters correspond approximately to the prime 
times listed above. The MCC pressure network was first trained using the entire six second startup 
transient. Errors approaching 100 percent of the actual values were observed prior to prime of the 
MCC. Figure 3 shows the percent error (Eq. (5)) as a function of time for a test firing in the training 
set, B1070. These large errors are due to the near zero values of the MCC pressure prior to the MCC 
prime time. The MCC prime for this test, indicated by the vertical line, occurred at approximately 
1.43 set, and was determined by the criterion described above. When trained on only post-prime time 
data, the maximum percent error on a test firing in the training set was less than one percent. Like 
the MCC pressure, the HPFP discharge pressure is close to zero during the first second of engine 
operation, and large percent errors were observed between the actual and predicted values when pre- 
FPB prime time data was included in the training set. The FPB primes earlier than the MCC; 
therefore, the time interval during which a predicted value is not available is smaller for the HPFP 
discharge pressure than for the MCC pressure. Since errors approaching 100 percent of the actual 
value are not likely to provide useful information to a safety or diagnostic system, pre-prime time data 
was not included in the final models for the pressures. 

The HPOT discharge temperature was trained on pre- and post-prime time data since it is 
nonzero prior to the prime of the OPB. This was desirable since the OPB primes the latest of all three 
chambers, typically around engine start +1.62 seconds. Training on post-prime time data only would 
significantly decrease the failure coverage for this parameter. The effect of prime time on the HPOT 
discharge temperature was assessed by training networks with and without a variable to indicate the 
transition from pre-prime to post-prime time behavior. The dummy variable indicating open-/closed- 
loop behavior given by Eq. (6) was modified for the HPOT discharge temperature to include the 
transition to full faceplate burning of the OPB: 

0.0, 0 -z t < OPB prime time 
DUMZ= -.25, 

i 
OPB prime time -c t < 3.6 (7) 

+.25, t > 3.6 

The introduction of the prime time variable was accompanied by a decrease in the total rms error. 

Results and Discussion 

Data from two nominal SSME firings were used to train feedforward networks to model three 
parameters during portions of the SSME startup transient. Several issues were presented in the 
application of the feedforward networks to the MCC pressure, the HPFP discharge pressure and the 
HPOT discharge temperature. The network which yielded the best model for each parameter when 
trained on data from test firings B1070 and B1072 was subsequently tested using data from four 
additional nominal firings: B1073, B1074, B1075 and B1077. The results are discussed below. 

The performance of the best model for each parameter is given in Tables 2,3 and 4. The total 
output rms error and maximum percent error, described by Eqs. (4) and (5), are given for each training 
and validation set. All three models used a window size of ten and a hidden layer with ten nodes. 
Table 1 summarizes the complete set of variables which comprised the input for each model. All 
models were trained for 20000 cycles. In a real-time safety or post-test diagnostic application, the 
number of training cycles should be chosen to achieve an optimum balance between model performance 
and practical implementation concerns. The MCC pressure model used to generate the values in Table 
2 was trained on post-prime time data only and included the open-/closed-loop variable given by Eq. 
(6). The HPFP model evaluated in Table 3 was trained on post-FPB prime time data. The HPOT 
discharge temperature model of Table 4 was trained on the entire first six seconds of engine operation. 
It included autoregressive information and the prime time and open-/closed-loop variable given by Eq. 
(7). In all cases, the total rms error and the maximum percent error were lower on the training test 
firings than on the validation test firings. The maximum percent error on a validation set, however, 
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was 2.92 percent for the MCC pressure, 4.94 percent for the HPFP discharge pressure, and 3.31 
percent for the HPOT discharge temperature. These small errors indicate that networks have 
successfully generalized the data in the two training test firings. 

h 

The maximum percent errors can be compared to the nominal test-to test variations exhibited 
by the, three parameters. In addition to giving the mean values, Figs. 2(a), 2(b), and 2(c) show the 
mean plus and minus two standard deviation values during startup for the MCC pressure, the HPFP 
discharge pressure, and the HPOT discharge temperature, respectively. The two standard deviation 
envelopes, like the mean values, are currently used in the SSME post-test data reviews. They were 
computed from a large number of test firings which engine experts considered nominal:’ The MCC 
pressure, a controlled variable, experiences the smallest test-to-test variation, while the HPOT 
discharge temperature experiences the largest. In all cases, the predictions of the networks were 
closer than the plus and minus two standard deviation variations shown in Fig. 2. 

When considering the test-to-test variations shown in Fig. 2(c), it can be seen that the 
performance of the HPOT discharge temperature model represented the most dramatic improvement 
over the two standard deviation limits. The quality of the predicted signals is displayed graphically 
for the HPOT discharge temperature in Figs. 4 and 5. Figure 4(a) gives the actual and predicted 
values for a test firing in the training set, B1070. The first predicted value is at .40 seconds due to . 
the window size of ten. Figure 46) gives the difference between the two curves; the maximum error 
is less than 6 deg R. Figure 5 illustrates the performance of the same model on a validation set test 
firing, B1077. Actual and predicted values are shown in Fig. B(a) and the difference between the 
actual and predicted values is given in Fig. 5(b). The maximum error on this firing is less than 16 deg 
R. A comparison of both Fig. 4(a) and Fig. 5(a) to Fig. 2(c) indicates that the neural network is a good 
predictor of the, HPOT discharge temperature even in areas where the temperature varies widely. 

A final note is in order regarding the models generated in this investigation. Each parameter 
had an input vector which contained a large number of highly correlated, non-redundant engine 
measurements. Alternate measurements were not considered. Smaller input vectors would reduce 
training time, yet may also degrade model accuracy. The effect of reducing the input vector size on 
prediction accuracy may suggest that smaller input vectors are adequate, particularly for a real-time 
implementation. In addition, fault isolation becomes difficult when a given parameter appears in the 
input vector for a large number of parameters. The inclusion of autoregressive information in the 
model of a parameter may desensitize the model to slow drifts in that parameter and therefore impede 
the detection of soft sensor failures or engine degradations which are manifested as drifts. The ability 
of feedforward networks to accurately model critical SSME parameters during the startup transient, 
has been demonstrated; the needs and limitations of the safety or post-test diagnostic system will 
determine many of the issues involved in model construction. 

Concluding Remarks 

Feedforward neural networks were used to accurately model three critical parameters during 
portions of the SSME startup transient. The formulation of accurate models is the first step towards 
improved startup fault detection and isolation. Once the models have been established, the residuals 
between the actual and synthesized values must be analyzed for indications of engine or sensor 
anomalies. Furthermore, fault isolation logic must be applied to the residuals in order to identify the 
source of the failure; more detailed fault isolation will be possible in a post-test diagnostic system. 
The models, along with the appropriate ‘fault detection and isolation logic, can then be incorporated 
into an existing safety or diagnostic system. As part of an advanced safety system, for example, the 
neural network models could assist the ignition confirm criteria in ensuring safe engine operation 
during startup. 

In this investigation, the MCC pressure, the HPFP discharge pressure, and the HPOT 
discharge temperature were simulated using time windows of data from highly correlated engine 
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measurements. Two nominal firings were used to train the networks and four additional nominal 
firings were used to validate the trained networks. All six firings were from the same test stand. In 
all cases, the errors were smaller on the training sets than on the validation sets. The maximum 
percent errors on the validation sets were, however, all less than 5 percent. The small errors indicate 
that the networks have successfully generalized the information in the training sets. Furthermore, 
the errors fell within the two standard deviation envelopes typically observed for the three parameters 
during startup. These envelopes are currently used to do a post-test assessment of the parameters. 
The HPOT discharge temperature model represented the most dramatic improvement over the plus 
and minus two standard deviation limits because the HPOT discharge temperature exhibits larger 
test-to-test variations than the MCC pressure and the HPFP discharge pressure. 

Model prediction accuracy was achieved by constructing the training sets to reflect important 
system conditions and by adjusting variables related to the network architecture. Dramatic 
improvements in network performance were realized when the pressures were trained only on data 
following the prime time of the relevant chamber. Although training on only post-prime time data 
reduces the failure coverage for the MCC pressure and the HPFP discharge pressure, the large percent 
errors experienced prior to MCC or FPB prime would be of little benefit to a safety or diagnostic 
system. The MCC and the FPB prime at approximately 1.44 and 1.37 seconds after engine start, 
respectively. The HPOT discharge temperature model was trained on the entire first six seconds of ^ 
SSME operation; model improvement was achieved by introducing a flag to indicate the occurrence 
of OPB prime. The HPOT discharge temperature model was further improved by adding 
autoregressive information; autoregressive data did not improve the quality of the predictions for the 
two pressures. Larger window sizes were also found to improve model performance. A larger window 
size, however, reduces the failure coverage for the modeled parameter by increasing the time until the 
first predicted value is available to the safety or diagnostic system. 

The tradeoff between model accuracy and the requirements and limitations of a safety or post- 
test diagnostic system was evident throughout this investigation. Improvements in model accuracy 
were often accompanied by longer training times and increased processing and memory requirements. 
This is because larger window sizes and autoregressive information increase the number of weights 
thereby increasing the number of computations per pass when the networks are being trained and 
when they are being used to model a new test firing. Although the highly parallel architecture of 
feedforward neural networks facilitates real-time implementation, the models are anticipated to be one 
component of an advanced safety system and will have limited computing and memory resources. 
Furthermore, some computations will be required to interpret the errors between the actual and 
predicted signals. Training times are important since it is anticipated that the networks will require 
periodic updating as new test data becomes available. All’of the models constructed for this 
investigation were trained and validated using test data from one test stand; test stand specific models 
may be required. Therefore, a large number of models may require maintenance. All networks were 
trained for 20000 cycles since model accuracy was the objective of this investigation. Practical 
considerations may suggest a smaller number of training cycles. 
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FPOV 

OPOV 

HPFP Discharge Pressure 

HPFP Coolant Liner Pressure 

FPB Chamber Pressure 

PBP Discharge Pressure 

HPFT Discharge Temperature 

HPOT Discharge Temperature 

OPB Chamber Pressure 

HPFP Shaft Speed 

Engine Fuel Flowrate 

Engine Oxidizer Flowrate 

DUMl X 

DUM2 X 
i 

’ - autoregressive input 

Table 1. Variables that appear in the neural network input for each of the three modeled 
parameters. 

II TorV TO~‘I!I$IS %z 

T .00153 .763 

T .00129 .592 

V .00238 1.48 

V .00252 1.54 

V .00531 2.92 

V .00506 1.97 

Table 2. The performance of the MCC pressure model on Train- 
ing CT) and Validation (VI test firings. The network 
was trained using post-MCC prime time data only and 
using the open/closed loop flag. 
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TEST T or V TOTALRMS MAXPCT 
FIRING ERROR ERROR 

-1’ T .00202 1.69 

II B1072 11 T 1 .00168 1 1.36 11 

Table 3. The performance of the HPFP discharge pressure 
model on Training CT) and Validation 0 test firings. 
The network was trained using post-FPB prime time 
data only. 

II B1070 11 T I .00125 I .960 II 

II B1072 Ii T I .00127 I 571~--1l 

II B1073 II v I .00381 I 3.29~~~~~11 

II B1074 11 V 1 JO358 1 2.07 ~~ 11 

II B1075 II v I .00787 I 3.31 II 
II B1077 II v I .00495 I 2.49 II 
Table 4. The performance of the HPOT discharge temperature 

model on Training 0 and Validation 0 test firings. 
The network was trained using the fUgt six seconds 
of etartup and using the variable indicating transition 
from pre-OPB prime to po&OPB prime to closed-loop 
behavior. Autoregressive information was also included. 

OUTPUT LAYER, y(t) 

HIDDEN LAYER 

INPUT LAYER, u(t) 

Figure 1. An example of a fully connected feedforward neural 
network with one hidden layer. 
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Figure 2. Nominal mean and mean plus and minus two stan- 
dard deviation values during the startup transient 
for (a.) the MCC pressure, (b.) the HPFP discharge 
pressure, and (c.) the HPOT discharge temperature. 
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0 1 2 3 4 5 6 
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Figure 3. Percent error as a function of time for test firing B1070. 
The dotted vertical line indicates the MCC prime time 
for this test. 
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Figure 4. The performance of the HPOT discharge temperature network on a test firing in the training set, B1070: 
(a.) the actual and predicted signals as a function of time and (b.) the difference between the actual and 
predicted values. 
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Figure 5. The performance of the HPOT discharge temperature network on a validation set test firing, B1077: 
(a.) the actual and predicted signals as a function of time, and (b,) the difference between the actual 

and 

predicted signals. 
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turbine discharge temperature, a redlined parameter; and the high pressure fuel pump discharge pressure, a
failure-indicating performance parameter. Network inputs consisted of time windows of data from engine measurements
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